Constructing Advantage: Wins/Losses and Probabilities

Daniel H. "Dan" Miller dhmmhd@yahoo.com

Presented at:
AAll Options
San Diego, CA
Jul 27, 2019

Trading Advantage: Motivation

- Goal: Develop a likely profitable trading strategy.
- Strategy: Balance dollar reward/risk (win/loss) ratio with probability of win in trades.
- Tactics: Be able to reproduce trades in such a system easily and effectively.

Trading Advantage: Basic Idea

- Enter a trade if the marketplace probability of winning is greater than a theoretical value probability of winning.
- Theoretical value of probability of winning is based on Advantage math model.

Trading Advantage: Method Overview

- Given a trade's dollar win / loss ratio, compute the corresponding minimum corresponding probability of win required.
- Compare computed model required minimum probability of win with marketplace probability of win.
- If the marketplace probability of win is greater than the computed model required probability of win, take the trade.

Example: Basis for Demonstration

- A few examples are used to illustrate Advantage trading theory.
- Different aspects of the trades are highlighted, to understand the approach from beginning to end.
- Other defined-risk option trades can be analyzed using the same method as the provided examples.
- All examples are based on the ThinkOrSwim (ToS) platform. Other platforms can be used, if the necessary data can be extracted from the platform.

Trade Systems vs. Individual Trades (1)

- Trade system
- Trade system is composed of a sequence of trades
- Each component trade is performed using repeatable and defined rules
- From initial equity, profit and losses are accumulated, resulting in a trade system's equity curve
- Trade system equity curve may terminate in different locations, compared to initial equity
- Break-Even: Equity curve ends near where it began
- Profitable: Equity curve end above where it began
- Losing: Equity curve ends below where it began
- Trade system equity path will vary (profit vs. loss)

Trade Systems vs. Individual Trades (2)

- Individual Trades
- Individual trades are constructed to adhere to repeatable and defined trading rules.
- Individual trades with options can be structured at opening to have defined win / loss ratio.
- Marketplace, however, is probabilistic, so the probability of win (and thus loss) are dynamic.

Equity Curve: Definitions

- Trading System Equity Curve: Profit and loss value of account, over time and over large sequence of trades
- Attributes of equity curve
- Number of trades, is composed (only) of
- number of trades that profited
- number of trades that lost
- Dollar quantities, is composed (only) of
- total dollar winnings
- total dollar losses
- Probability of Winning is Number of Trades that Profited divided by Total Number of Trades
- Win / Loss Ratio is Total Dollar Winnings divided by Total Dollar Losses

Equity Curves: Aim

- Use simulation to evaluate possible equity curves.
- In the simulation of equity curves
- All trades have the same win / loss ratio (reward / risk ratio).
- Probability of win is varied.
- With the right combinations of win / loss ratios and probabilities of winning, equity curves are more likely to be profitable.
- Simulated equity curves involve probabilities of winning and losing, thus are not guaranteed.

Equity Curves: Right Combinations Win $/$
 Intermediate

 AdvantageLoss Prob. Equity Curve
Ratio of Win Losses Ending Equity Curve Value

No	0.66	57%	All	All Lose
No	0.66	60%	About $1 / 2$	Some Lose, Some Gain
No	0.66	61%	About $1 / 2$	Mostly Gain
Yes	0.66	62%	About $1 / 4$	All Gain
Yes+	0.66	63%	About $1 / 3$	All But 1 Gain

- Each simulated equity curve is 100's of trades.
- Each simulation consists of 10 equity curves.
- Same win/loss ratio in all simulations.
- Five different probabilities of win are simulated.

From Equity Curves to Trades

Compare:
Use win / loss ratio and probability of winning to analyze a prior system, to:

Construct trades with higher likelihood to grow the equity curve with each trade.

Example: Trade Structure

- SPY @ 148.20 on Sept 10, 2007
- Out-of-the-Money bear call vertical, Oct 2007 expiration, $\$ 0.40$ credit
- Sell 150 Call
- Buy 151 Call
- Key attributes of vertical necessary for Advantage analysis
- Defined win: net option credit
- Defined loss: difference between strikes less credit
- Defined probability of win: making 1 cent or more by expiration

Example: Win / Loss Ratio

Example: Probability of Win

Example: Right Combination

Example: Right Combinations

- In General: How can the correct balance between win / loss ratio and probability of win be calculated?
- Specifically: How did I decide to open the trade on the prior slide?
- By constructing each trade with the correct balance between win / loss ratio and probability of win, we aim for a higher likelihood that the equity curve created will terminate with an account value greater than the starting value.

Advantage Formula: Background

Formula: (TW - TL) / TL = C
where
TW = Total winnings,
TL = Total losses,
C = "Advantage" preference
English: A trading system is measured by its winnings in excess of losses, normalized by losses. The Advantage measure " C " is a trader's economic preference.
Key: When $\mathrm{C}=0$, there is equilibrium between winning and losing: TW = TL

Adapted from David Sepiashvili, How to Best Evaluate System Performance, Futures, March 2005

Advantage Formula: Daily Use

- Evaluate individual trades using Advantage math:

Probability of Win $=S /(1+S)$
where
$\mathrm{S}=(\mathrm{C}+1)^{*}$ (Loss / Win)
C = "Advantage" preference

- A trading system with positive advantage ($\mathrm{C}>0$) will more likely have a profitable equity curve.
- Henceforth: Advantage $=C=0.1$

Advantage Formula: Graphical View

Probability of Success vs. Win/Loss Ratio, For Constant Advantages (C)

Probabilities: Needed vs. Marketplace

- Needed probabilities
- Calculated per the Advantage formula
- Dependent only on win, loss, and C
- Consequently, needed probabilities are computed independent of real-world conditions
- Marketplace probabilities
- Valued real time in the marketplace
- Dependent on time to expiration

Probabilities: Needed vs. Market

- Opportunity: Given a fixed win / loss ratio and a fixed Advantage (C), the formula probability of winning is different from marketplace probability of winning.
- Probabilities in the marketplace greater than probabilities using the formula indicate trades to open:

Advantage Ratio =

$$
\frac{(\text { Probability of Win })_{\text {Marketplace }}}{(\text { Probability of Win })_{\text {Formula }}} \geq 1
$$

Example: Worksheet (revisit)

- SPY @ 148.20 on Sept 10, 2007
- Decide: Sell bear vertical, 150/151, Oct07, calls, for $\$ 0.40$?
- Formula:

Win $/$ Loss $=40 / 60=0.66$ $\mathrm{S}=(0.1+1) *(60 / 40)=1.65$
Probability of Win Needed $=S /(1+S)=0.6226$
Probability of Win in Marketplace $=0.6374$
Advantage Ratio =
Probability Marketplace / Probability Needed = 0.6374 / $0.6226=1.02$

- Conclusion: Take the trade, because Advantage Ratio is greater than 1.00

Finding Real World Trades

- Finding real-world Advantaged trade is difficult and relatively rare.
- If such trades exist, they are likely
- further out in time: greater option time value
- to have higher volatilities: higher volatility means higher prices.

Iron Condor: Worksheet

 QQQQ @ 48.20 on Sept 10, 2007
Decide: Sell narrow Iron Condor, 46/47/49/50, Nov07, for \$0.81?
Win / Loss = $81 / 19=4.26$
$\mathrm{S}=(0.1+1) *(19 / 81)=0.2580$
Probability of Win Needed =
S / $(1+S)=0.2051$
Probability of Win in Marketplace = 0.2311

Advantage Ratio =
Probability Marketplace /
Probability Needed $=0.2311 / 0.2051$
$=1.12$
Conclusion: Take the trade

ThinkOrSwim: Tooling

- Find Advantage trades: ToS | Scan | Spread Hacker (Beware: Valid only during market hours)
- Add spread filters for criteria needed for Advantage calculation (ex.: given PoP, compute market W/L ratio)
- Single expiration date (use +/- 1 for min/max range)
- "Probability of profit" [probability of win]: Select a specific probability of profit, by bracketing +/- 1 for min/max range
- "Max profit" [win / loss ratio]: Calculate max profit target using Advantage formula, and use it as minimum of range
- Right click to "Analyze Trade"
- Confirm win / loss ratio and probability of win on Analyze page

Further Applications

- Strategy: Compare Advantage Ratios
- Trade A has Advantage Ratio A; Trade B has Advantage Ratio B
- Rule:

Prefer Trade A over Trade B if Ratio A is greater than Ratio B

- Further Applications (see appendix)
- Confirming Advantage Ratio remains positive after slippage
- Comparing trades at different strikes, dates, volatilities
- Tracking trades, using Advantage to decide when to exit

Appendix:
 Equity Curve Simulation

Single Equity Curve Simulation

- Start with fixed equity in account
- For each successive component trade: Invest with a given win/loss ratio (namely, a fixed win dollar amount, and a fixed loss dollar amount)
- For each trade, compute incremental P/L
- Win the win amount with a win probability, or
- Lose the loss amount with loss probability
- For each trade, add or subtract incremental P/L to current account value
- After many trades, an equity curve is formed, with a path and a final account value

Single Equity Curve Sim.: Sample

Single Equity Curve Sim.: Insights

- This is a simulation... Other runs of the simulation will result in different curves with different paths and final values.
- During the simulation, the equity curve is sometimes above 0 (profits) and sometimes below 0 (losses).
- Sometimes there are streaks of losses and wins.
- Depending on when you stop, equity curves could end at a profit or at a loss.

Multiple Equity Curves on One Plot

- Run and plot multiple individual simulations of individual equity curves.
- Key: All simulations on a single plot have the same win/loss ratio and same probability of win.
- Key: For each different plot, win/loss = \$40/\$60 is constant, while probability of win changes from simulation to simulation, resulting in different equity curve behavior.

Equity Curves: Losing Cases (57\%)

Probability of Win $=57 \%$, Prob. Of Loss $=43 \%$ When win with prob 57%, then make $\$ 40$, when lose with prob 43\%, then lose $\$ 60$. All equity curves end (far) below initial value

Equity Curves: Mostly Even Cases (60\%)

 Win / Loss = \$40 / \$60 = 0.66 Probability of Win $=60 \%$, Prob. Of $40 s s=40 \%$ When win with prob 60% then make $\$ 40$ when lose with prob 40% when lose $\$ 60$Some equity curves end above and some end below initial varlye.

Equity Curves: Many Gaining Cases (61\%)

 Win $/$ Loss $=\$ 40 / \$ 60=0.66$ Probability of Win $=61 \%$, Prob. Of Loss $=39 \%$ When win with prob 61%, then make $\$ 40$ when lose with prob 39%, then Jo'se $\$ 60$. More equity curves end above initial value than

Equity Curves: Mostly Gaining Cases (62\%)

Win $/$ Loss $=\$ 40 / \$ 60=0.66$
Probability of Win $=62 \%$, Prob. Of Loss $=38 \%$ When win with prob 62\%, then make/ $\$ 40$, when lose with prob 38%, then lose $\$ 60$.
All equity curves end above unitial value, but some were below initial value during trading.

Equity Curves: Mostly Gaining Cases (63\%)

Win $/$ Loss $=\$ 40 / \$ 60=0.66$
Probability of Win $=63 \%$, Prob. Of Loss $=37 \%$ When win with prob 63\%, then make $\$ 40$, when lose with prob 37%, then lose $\$ 60$
All equity curves end significantly above inhitial value, but some werebelow initial value euring

Equity Curves: Leading to a Strategy

- Question: Comparing plots, in which simulations do most of the equity curves remain profitable during trading and end with profits?
- Strategy: Choose a win/loss ratio and probability of win combination that has a high proportion of profitable equity curves.
- Tactic: Use Advantage math to compute minimum probability of win needed for the given win/loss ratio.
- Example: Use Advantage math, for win/loss = $40 / 60=0.66$, given $C=0.1$, needed/minimum probability of win is 0.62 .

Multiple Equity Curve Simulations: Insights

- Profitability is more likely (but not guaranteed) using the "right" combination of win / loss ratio and probability of win.
- Many traders say

This trade has a good risk/reward (loss / win) ratio
but now we know this statement is incomplete without also stating the associated probability of win, to characterize the likely equity curve shape.

Equity Curve Simulations: Practical Implications

- You are not guaranteed intermediate or terminal equity curves values, even if probabilities are in your favor.
- Unfortunately, your own equity curve may be one of the few losing equity curves among many other possible winning equity curves.

Appendix: Math

Adapted from

David Sepiashvili, How to Best Evaluate System Performance, Futures, March 2005

Definition of Terms: Win, Loss

Total Winnings: Among a large number of trades, the total dollar amount of profits.
Total Losses: Among a large number of trades, the total dollar amount of losses.
$\mathbf{W}=$ Average Win: Among a large number of trades, the total dollar amount of winnings, divided by the number of profitable trades (NW)
$\mathbf{L}=$ Average Loss: Among a large number of trades, the total dollar amount of losses, divided by the number of losing trades (NL)
For a trading system, Win / Loss Ratio
$=($ Average Win / Average Loss) $=(\mathrm{W} / \mathrm{L})$

Definition of Terms: Probabilities

NT = Total number of trades, in a trading system
NW = Number of trades that resulted in a win
$\mathbf{N L}=$ Number of trades that resulted in a loss
$\mathbf{T W}=$ Total winnings $=$ NW $* W$
TL $=$ Total losses $=N L * L$
$\mathbf{P W}=\mathbf{P r}(\mathbf{W})=$
Probability of a win = NW / NT
so NW = PW * NT
$\mathbf{P L}=\mathbf{P r}(\mathrm{L})=$ Probability of a loss $=$ NL $/$ NT
so NL = PL * NT
$\mathbf{P W}+\mathbf{P L}=\mathbf{1}$ (only wins or losses are possible)

Advantage Formula: Background

Formula: (TW - TL) / TL = C
where:
TW = Total winnings,
TL = Total losses,
C = "Advantage" preference
English: A trading system is measured by its winnings in excess of losses, normalized by losses. "C", the advantage, is a trader's economic preference.

Adapted from David Sepiashvili, How to Best Evaluate System Performance, Futures, March 2005

Advantage Formula: Algebra

```
(TW - TL) / TL
= [ TW / TL ]-1
= [(NW*W)/(NL*L)]-1
= [(PW*N*W) / (PL*N*L)]-1
= [(PW*W) / (PL*L)]-1
= [(PW/PL)* (W/L)]-1
=[(PW/(1-PW))*(W/L)]-1
=C
```


Advantage Forumla: Solve for PW

Solve for PW, given (W/L) and C in:
$(\mathrm{TW}-\mathrm{TL}) / \mathrm{TL}=[(\mathrm{PW} /(1-\mathrm{PW})) *(\mathrm{~W} / \mathrm{L})]-1=\mathrm{C}$
Set $P=P W \quad\{$ shorthand $\}$
$[(P /(1-P)) *(W / L)]-1=C$
$(P /(1-P)) *(W / L)=(C+1)$
$(\mathrm{C}+1) * 1 /(\mathrm{W} / \mathrm{L})=\mathrm{P} /(1-\mathrm{P})$
Set $\mathrm{S}=(\mathrm{C}+1) * 1 /(\mathrm{W} / \mathrm{L})$
$S=P /(1-P),(1-P) S=P, S-P S=P, S=P+P S$,
$S=P(1+S), P=S /(1+S)$
$P W=S /(1+S)$

Using Advantage Algebra

- Set Advantage: Assume you seek an Advantage of $+10 \%$, so set $C=0.1$
- Free Variables: Since C is now fixed ("bound"), there are two remaining free variables: W/L and PW Advantage math relates one given the other.
- Application Summary: Invest in trades whose market probability of winning $[\operatorname{Pr}(\mathrm{W})$ market] is greater than Advantage calculated probability of winning $[\operatorname{Pr}(\mathrm{W})$ needed], for the given win/loss [W/L] ratio, at a constant Advantage C.
- A constant Advantage C curve represents all pairs of (W / L) and $\operatorname{Pr}(W)$.

Appendix:
 Constant Advantage Curves

Constant-Advantage Curves: Graph

Probability of Win vs. Win/Loss Ratio, For Constant Expected Values (C)

Constant-Advantage Curves: Analysis

- Higher win/loss ratios correspond with lower probabilities, across all Advantage curves
- For a given probability, higher advantages demand higher win/loss ratios
- For a given win/loss ratio, higher advantages demand higher probabilities
- Advantage curves C < 0 (negative Advantage) are
- likely to produce losses over the long-term,
- are not shown on the graph, and
- should not be traded.

Appendix:
 Further Applications

Advantage Ratio: Slippage

- Confirm Advantage Ratio at mid-price
- Confirm Advantage Ratio at likely fill price (toward natural price)
- Confirm Advantage Ratio after commissions

Advantage Ratio: Comparing Trades

- Confirm Advantage ratios after modifying trade parameters (from options pricing model), e.g.,
- Strike price
- Volatility
- Expiration date
- Closing date before expiration

Advantage Ratio: Tracking and Closing Trades

- Approach: Exit trade by comparing marketplace probability of win on trade opening day to successive days' market probabilities.
- Method
- Open trade with Advantage Ratio above 1.
- Define probability of win, when opening, in the marketplace as P0.
- For each successive trading day t, compare probability of win in the marketplace Pt to P0: Pt/P0.
- Examples
- Exit when Pt/PO is $1 / 2$ of PO. Note: Ratio of $1 / 2$ is a preference.
- Exit when "high probability" 80\% trade becomes "even" 50\% probability

